


Integration Techniques 1

Mark Scheme

Question		Answer	Mks	AO	Guidance	
1		In all three parts: Allow unsimplified answers. ISW for incorrect simplification. Ignore incorrect dx and/or \int				
1	(a)	$3 + 15x^{-4}$ or $3 + \frac{15}{x^4}$ oe	B1 M1 A1 [3]	1.1 1.1a 1.1	3x correctly differentiated to 3 kx^{-4} oe $15x^{-4}$ or $\frac{15}{x^4}$ oe	ISW eg $5 \times 3x^{-4} = \frac{5}{3x^4}$ M1A1
1	(b)	$-60x^{-5}$ or $-\frac{60}{x^5}$ oe	B1f B1f [2]	1.1a 1.1	zero term stated or implied by absence other term, ft their 2nd term in (a) if includes negative index	or ft their 1st term in (a) ISW
1	(c)	$\frac{3x^2}{2} + \frac{5}{2}x^{-2} + c$ or $\frac{3x^2}{2} + \frac{5}{2x^2} + c$ oe	B1 M1 A1 [3]	1.1 1.1a 1.1	$\frac{3x^2}{2}$ kx^{-2} oe All correct and + c.	ISW

Question			Answer		Marks	AO	Guidance	
2	(a)		$3x^2 - 3 - \frac{10}{x^3}$	oe	M1 B1 A1 [3]	1.1 1.1 1.1	Allow M1 for $\pm \frac{k}{x^3}$, B1 for either $3x^2$ or -3 A1 for all correct	
2	(b)		$2x^3 + \frac{1}{x^2}$	or $2x^3 + x^{-2}$	oe $+ c$	M1 A1 B1 [3]	1.1 1.1 1.1	Allow M1 for ax^3 or $\pm \frac{b}{x^2}$ ($a, b \neq 0$) A1 for both terms correct. Allow unsimplified form, eg $-\frac{2}{-2x^2}$

Question		Answer	Mark	AO	Guidance
3		$x(x^2 - 4) = 0$ $x = 0, -2, 2$ $A_1 = \int_0^2 (x^3 - 4x) dx$ $= \left[\frac{x^4}{4} - 2x^2 \right]_0^2 = -4$ $A_2 = A_1 = 4 \quad \text{or } A_2 = -A_1 = 4$ $\text{Total area} = 8$	B1 B1 M1* A1 dM1 A1	3.1a 1.1 1.1 1.1 2.1 1.1	DR Evidence of factorising or otherwise attempting to solve ($=0$ not required for this mark) This mark may be implied by correct limits Ignore limits for this mark Must be seen for this mark (or clear indication of taking modulus) Condone area from $[0, -2]$ as -4 or from $[2, 0]$ as $+4$ but must be consistent with their limits By symmetry: Total area $= 2 \times$ (their A_1) or adding together two areas of the same sign from their two integrals (or just $4 + 4$) www, Area must be positive
		Alternative method for final M1*A1dM1A1 $\int_{-2}^0 (x^3 - 4x) dx - \int_0^2 (x^3 - 4x) dx$ $= 4 - (-4)$ $= 8$	M1* A1 dM1 A1		Ignore limits for this mark Correct area of -4 seen Attempt combine the two areas, with correct signs www, Area must be positive
			[6]		NB $\int_{-2}^2 (x^3 - 4x) dx = 0$ scores B1B1M1A0M0A0 if working seen SC, no working or inadequate working: One area = 4: SCB3 or Total area = 8: SCB4

Question		Answer	Marks	AO	Guidance
4		$ \begin{aligned} y &= -x^2 + c \\ -13 &= -4^2 + c \quad (c = 3) \\ -x^2 + 3 &= 2x \\ x^2 + 2x - 3 &= 0 \\ (x + 3)(x - 1) &= 0 \quad \text{or } (x + 1)^2 - 4 = 0 \\ \text{or } x &= \frac{-2 \pm \sqrt{2^2 - 4 \times 1 \times (-3)}}{2} \\ x &= 1 \text{ or } -3 \\ (1, 2) &(-3, -6) \end{aligned} $	M1 M1 A1FT M1 M1 M1 A1 A1 [7]	3.1a 1.1 1.1 2.1 1.1 1.1 1.1 1.1	Allow omission of “y =”. Must include “+ c” FT their integral of $-2x$. Must include “+ c” FT their integral of $-2x$ and their c Rearrange their quadratic equation to solvable form. Must see this step FT their c . May be implied by correct values for x Condone $y=2, y=-6$ as long as clearly identified and paired. SC B1B1 for correct solutions without working in second half (i.e. max M1M1A1M0M0B1B1 5/7)

Question		Answer	Marks	AO	Guidance
5	(a)	$\int (x^2 - 3x)dx$ $= \frac{x^3}{3} - \frac{3x^2}{2} + c$ $20 = \frac{6^3}{3} - \frac{3 \times 6^2}{2} + c$ $(\Rightarrow c = 2)$ $y = \frac{x^3}{3} - \frac{3x^2}{2} + 2$	M1 A1 M1 A1 [4]	3.1a 1.1 2.1 1.1	\geq one term or both powers correct. May be implied by result Allow without "+ c" Substitute $x = 6$ into their integral, dep M1, & = 20 Correct answer, including "y = ". Allow $f(x) = \dots$ NB, if no working seen for finding c , but fully correct answer given: SC3
5	(b)	$\int_1^p \left(\frac{x^3}{3} - \frac{3x^2}{2} + 2 \right) dx$ $= \left[\frac{x^4}{12} - \frac{x^3}{2} + 2x \right]_1^p$ $= \frac{p^4}{12} - \frac{p^3}{2} + 2p - \frac{19}{12}$ oe	M1 A1ft M1 A1ft [4]	2.1 1.1 1.1 1.1	ft their equation, dep cubic. \geq two terms or all three powers correct. May be implied by result Correct integral of their curve, dep quartic Substitute limits 1 and p , dep integration attempted ft their integral, dep their integral is a quartic.

—

Question		Answer	Marks	AO	Guidance	
6	(a)	Cubic curve, correct orientation cuts x -axis twice to left of O and once to right	B1 B1 [2]	1.2 1.1	Allow cubic of incorrect orientation	
6	(b)	$(-3a, 0), (-a, 0), (b, 0)$ all shown correctly $(0, -3a^2b)$ shown correctly	B1 B1 [2]	1.1 1.1	allow $-3a, -a, b$ marked on x -axis allow $-3a^2b$ marked on y -axis	
6	(c)	$\int_{-3}^{-1} (x+3)(x+1)(x-4)dx$ $= 8$ $8 - (-93.75) \quad \text{or } 8 + 93.75$ $\frac{407}{4} \text{ or } 101.75 \text{ or } 102 \text{ (3 sf)}$	$\int_{-1}^4 (x^3 - 13x - 12)dx$ $= -\frac{375}{4} \text{ or } -93.75$	M1 A1 M1 A1 [4]	1.1 1.1 2.1 2.2a 	State or imply integrating $f(x)$ with any limits or none Allow incorrect expansion A1 for either answer or for $\frac{375}{4}$. BC Allow A1 for $\pm \frac{343}{4}$ Attempt subtract their integrals with correct limits, one +ve, one -ve ie $I_1 - I_2$ or $I_1 + (-I_2)$ or $I_1 + I_2 $ dep I_2 being -ve NB $\int_{-3}^{-1} + \int_{-1}^4 = 8 + 93.75 \quad \text{M1A1M0A0 (Two errors)}$

Question		Answer	Marks	AO	Guidance	
7	(a)	$y = 1 - x + \frac{6}{\sqrt{x}}$ leading to $y' = \dots$ $y' = -1 - 3x^{-\frac{3}{2}}$ At $x = 1, m_T = -4 \Rightarrow m_N = \frac{1}{4}$ $y - 6 = \frac{1}{4}(x - 1)$ $-x + 4y = 23$	M1 A1 M1* M1dep* A1 [5]	2.1 1.1 1.2 1.1 1.1	Derivative of the form $-1 + kx^{-\frac{3}{2}}$ Substitutes $x = 1$ into their derivative and correct use of $mm' = -1$ Use of $y - 6 = m_N(x - 1)$ oe	
7	(b)	$x = 4, y = 1 - 4 + \frac{6}{\sqrt{4}} = 0$	B1 [1]	1.1	AG – must show sufficient working and must see = 0	
7	(c)	DR $\int \left(1 - x + \frac{6}{\sqrt{x}}\right) dx =$ $= x - \frac{1}{2}x^2 + 12\sqrt{x}$ $\left(4 - \frac{1}{2}(4^2) + 12\sqrt{4}\right) - \left(1 - \frac{1}{2} + 12\right) = \dots$ $\frac{1}{2}\left(\frac{23}{4} + 6\right)(1)$ $\frac{107}{8}$	M1* A1 M1dep* B1ft A1 [5]	2.1 1.1 1.1 3.1a 2.2a	Attempt to integrate with at least two terms correct Use of correct limits (1 and 4) Any correct numerical expression for the area of the trapezium between $x = 0$ and $x = 1$ using their result from (a) Or exact equivalent (e.g. 13.375)	If correct, then expect to see 7.5

Question		Answer	Marks	AO	Guidance	
8		<p>DR</p> $8x^{\frac{1}{2}} + 3x$ $(8a^{\frac{1}{2}} + 3a) - (16 + 12) = 7$ $3a + 8a^{\frac{1}{2}} - 35 = 0$ $(3a^{\frac{1}{2}} - 7)(a^{\frac{1}{2}} + 5) = 0$ <p>$a^{\frac{1}{2}} \neq -5$ as $a^{\frac{1}{2}}$ can't be negative</p> $a^{\frac{1}{2}} = \frac{7}{3} \Rightarrow a = \frac{49}{9}$	<p>M1*</p> <p>A1</p> <p>M1dep*</p> <p>M1</p> <p>M1</p> <p>A1</p> <p>A1</p>	<p>2.1</p> <p>1.1</p> <p>1.1</p> <p>1.1</p> <p>3.1a</p> <p>2.3</p> <p>2.2a</p>	<p>M1 for either term integrated correctly</p> <p>Correct use of correct limits and equating to 7 – allow one substitution error</p> <p>Forming a 3TQ in $a^{\frac{1}{2}}$</p> <p>Dependent on all previous M marks – correct method for solving for $a^{\frac{1}{2}}$</p> <p>Explicit rejection of -5 No specific justification required</p> <p>Correct value only</p> <p>[7]</p>	<p>Any three-term form (so terms do not need to be on the same side)</p> <p>Or $8a^{\frac{1}{2}} = 35 - 3a$ $9a^2 - 274a + 1225 = 0$ $(9a - 49)(a - 25) = 0$</p> <p>Explicit rejection of $a = 25$ No specific justification required</p>

Question	Answer	Marks	AO	Guidance	
9	$\frac{32}{3}$	B1	1.1	Seen or implied by later working	
	$\int (-x^2 + 6x - 5) dx = -\frac{x^3}{3} + 3x^2 - 5x$ $-\frac{a^3}{3} + 3a^2 - 5a - \left(-\frac{5^3}{3} + 75 - 25 \right)$ $\frac{32}{3} + \frac{a^3}{3} - 3a^2 + 5a + \frac{25}{3} = 19$ $a^3 - 9a^2 + 15a = 0 \Rightarrow a^2 - 9a + 15 = 0 \because a \neq 0$ $a \neq \frac{9 - \sqrt{21}}{2} \because a > 5$ $a = \frac{9 + \sqrt{21}}{2} \text{ only}$	M1* A1 Dep*M1 A1 M1 B1 A1 [8]	3.1a 1.1 1.1 1.1 3.1a 3.2a 2.2a	Attempt integration on a 3 term quadratic in x Ignore lack of $+c$ $\pm(F(a) - F(5))$ oe solve their cubic (which comes from attempt at both areas and 19) leading to an exact value for a BC – must give a reason for rejection of this value of a BC	(increase in power by 1 for at least 1 term but not just multiplying each term by x) Dependent on both previous M marks Allow rejection of 2.21

Question		Answer	Marks	AOs	Guidance	
10		<p>DR</p> $\int_8^a 2x^{\frac{1}{3}} - 7x^{-\frac{1}{3}} dx = 45$ $\left[\frac{2x^{\frac{4}{3}}}{\left(\frac{4}{3}\right)} - \frac{7x^{\frac{2}{3}}}{\left(\frac{2}{3}\right)} \right]_8^a (= 45)$ $\frac{3}{2}a^{\frac{4}{3}} - \frac{21}{2}a^{\frac{2}{3}} - \left(\frac{3}{2}(8)^{\frac{4}{3}} - \frac{21}{2}(8)^{\frac{2}{3}} \right) (= 45)$ $\frac{3}{2}a^{\frac{4}{3}} - \frac{21}{2}a^{\frac{2}{3}} - (24 - 42) (= 45)$ $a^{\frac{4}{3}} - 7a^{\frac{2}{3}} - 18 = 0$ $\left(a^{\frac{2}{3}} - 9 \right) \left(a^{\frac{2}{3}} + 2 \right) = 0$ $a^{\frac{2}{3}} = 9 \quad \left(\text{and } a^{\frac{2}{3}} = -2 \right)$ $a = 27 \text{ only}$	<p>M1*</p> <p>A1</p> <p>A1</p> <p>Dep*M1</p> <p>A1</p> <p>M1</p> <p>M1</p> <p>A1</p> <p>A1</p>	<p>3.1a</p> <p>1.1</p> <p>1.1</p> <p>1.1</p> <p>1.1</p> <p>1.1</p> <p>3.1a</p> <p>1.1</p>	<p>If $a = 27$ with no working then 0/9</p> <p>M1 – attempt integration (increase in power by 1 for at least 1 term) A1 – 1 term correct (accept unsimplified)</p> <p>A1 – both correct (accept unsimplified)</p> <p>$F(a) - F(8)$</p> <p>oe</p> <p>Equate integrated expression to 45 – dependent on both previous M marks</p> <p>Attempt to solve quadratic in $a^{\frac{2}{3}}$</p>	<p>SC if M0 for fourth M mark then award</p> <p>B1 for $a^{\frac{2}{3}} = 9$</p> <p>B1 $a = 27$ only</p>

Question		Answer	Marks	AO	Guidance	
11		$\frac{dy}{dx} = 20x^3 + 3ax^2 + b$ $12a + b = -160$ $\int (5x^4 + ax^3 + bx) dx = \frac{5x^5}{5} + \frac{ax^4}{4} + \frac{bx^2}{2} (+c)$ $\int_0^2 (5x^4 + ax^3 + bx) dx$ $= (2)^5 + \frac{a}{4}(2)^4 + \frac{b}{2}(2)^2 = -48$ $a = -12, b = -16$ <p>y-coordinate of P is -48</p>	M1* M1dep* M1* A1 M1dep* A1 A1 A1	2.1 1.1 1.1 1.1 3.1a 1.1 2.2a [7]	Attempt to differentiate (at least two terms correct) Substitutes $x = 2$ into their derivative and set derivative equal to zero (need not be simplified) Attempt to integrate (all terms with powers increased by 1 and at least one term correct) cao (need not be simplified) Correct use of limits $x = 0$ and $x = 2$ in their integrated expression (need not be simplified) and set equal to ± 48 (oe). Needs to be in terms of a and b . BC (For reference if correct: $y = 5x^4 - 12x^3 - 16x$) cao	For reference (if simplified): $2a + b = -40$ www

Question		Answer	Marks	AO	Guidance	
12	(a)	$3x^2 + 2 > 0$ for all values of x therefore stationary point is a minimum	B1 [1]	2.4		
12	(b)	$y' = \int (3x^2 + 2) dx = x^3 + 2x + k$ $y' = 0$ at $x = -1$ $\Rightarrow (-1)^3 + 2(-1) + k = 0$ leading to $k = \dots$ $y = \int (x^3 + 2x + 3) dx = \frac{1}{4}x^4 + x^2 + 3x + c$ $(-1, \frac{1}{4}) \Rightarrow \frac{1}{4}(-1)^4 + (-1)^2 + 3(-1) + c = \frac{1}{4}$ leading to $c = \dots$ $y = \frac{1}{4}x^4 + x^2 + 3x + 2$	M1* M1dep* M1 M1 A1 [5]	2.1 1.1 1.1 1.1 2.5	Attempt to integrate (at least one of the terms in x correct) Uses correct conditions to find the value of k (candidates may use the fact that when $x = 0$, $y' = 3$) Integrates their y' correctly (allow with $k = 0$) Uses correct conditions to find the value of c cao (must include $y =$)	Condone with no $+k$ If correct $k = 3$ Condone with no $+c$ (allow use of same letter for second constant)

Question		Answer	Marks	AO	Guidance	
13	(a)	$\begin{aligned} f(x+h) &= a(x+h)^2 + b(x+h) \\ &= a(x^2 + 2xh + h^2) + b(x+h) \\ f(x+h) - f(x) &= (ax^2 + 2ahx + ah^2 + bx + bh) - (ax^2 + bx) \\ &= 2xah + ah^2 + bh \\ \frac{f(x+h) - f(x)}{h} &= 2ax + ah + b \\ f'(x) &= \lim_{h \rightarrow 0} \frac{f(x+h) - f(x)}{h} = 2ax + b \end{aligned}$	[4]	M1 A1 A1 A1 [4]	2.1 1.1 1.1 2.2a	Considers $f(x+h)$ and attempts to expand bracket squared Correct simplified expression for $f(x+h) - f(x)$ Correct simplified expression cao – must be explicit that the limit (and not simply $h = 0$) is considered
13	(b)	$\begin{aligned} \int(ax^2 + bx)dx &= \frac{1}{3}ax^3 + \frac{1}{2}bx^2 (+c) \\ \int_1^4(ax^2 + bx)dx &= \left(\frac{64}{3}a + 8b\right) - \left(\frac{1}{3}a + \frac{1}{2}b\right) (= 21a + \frac{15}{2}b) \\ 21a + \frac{15}{2}b &= 9 \\ (f'(4) =) 8a + b &= -0.75 \\ a = -0.375, b = 2.25 & \\ y = -0.375x^2 + 2.25x \text{ with } x = 4 \text{ gives } y &= 3 \\ \text{Equation of tangent: } y - 3 &= -0.75(x - 4) \\ 0 - 3 &= -0.75(k - 4) \Rightarrow k = 8 \end{aligned}$	[7]	M1* M1dep* M1 B1 A1 M1 A1 M1 A1 A1	2.1 1.1 3.1a 1.1 1.1 1.1 BC (oe) 1.1 1.1 2.2a	Attempt to integrate (with at least one term correct) Correct use of limits $x = 1$ and $x = 4$ in their integrated expression (need not be simplified) Dependent on both previous M marks – setting up an equation in a and b using the area of shaded region Correct equation in a and b BC (oe) Sets up the equation of the tangent at $x = 4$ using 4, -0.75 and their y value at $x = 4$ (dependent on all previous M marks) or for $\frac{\text{their } y}{k - 4} = -0.75$ Equation of tangent may have y set to 0 and x equal to k